
J .  FZuid Mech. (1965), vol. 23, part 3, pp.  481-510 

Printed in Great Britain 
48 1 

The spectral dynamics of laminar convection 

By GEORGE W. PLATZMAN 
Department of the Geophysical Sciences, The University of Chicago 

(Received 13 October 1964 and in revised form 26 April 1965) 

The non-linear equations of the B6nard convection problem are transformed to 
the spectral domain. The spectral basis consists of the supercritical normal modes 
of the characteristic-value problem in which the exponential growth rates are 
characteristic values. The norm of the spectrum is the variance of an arbitrary 
finite-amplitude state of convection. The equations that govern the spectrum 
are solvable by linear methods when the spectrum is truncated by exclusion of all 
convective modes except those of lowest-order symmetric vertical structure. 
Numerical computations of heat flux for a spectrum that contains only one con- 
vective mode are in good agreement with experimental data for water in the 
laminar rBgime. 

1. Introduction 
This investigation is concerned with free, vertical heat convection in a hori- 

zontal, thin layer of liquid-the Bbnard problem. The state of knowledge of the 
linear stability theory of this problem is virtually complete (Chandrasekhar 1961), 
and establishes a base from which finite-amplitude, non-linear aspects of the 
problem can be investigated. Among the questions that lie in the latter field are 
determination of heat flux as a function of thermal potential, explanation of the 
horizontal plan form of convection cells, specification of the structure of thermal 
boundary layers, and prediction of transition from laminar to turbulent convec- 
tion. (Some recent papers are cited at the end of this section.) 

The aim of the present work is to develop a formal, spectral theory of the 
BBnard problem, and by this means, to make a contribution to the first of the 
questions noted above. In  particular, a deductive theory of the heat flux is given 
for Rayleigh numbers of order lo4 where at  most a few convective modes are self- 
excited and convection is still laminar. The point of departure is the representa- 
tion of a non-linear state, corresponding to a particular supercritical Rayleigh 
number, as a linear combination of the normal (linear) modes that correspond to 
the same Rayleigh number. To carry out this program it is necessary first to 
formulate the normal-mode theory in a general way that is convenient for a 
spectral representation; then to solve the normal-mode equations in order to 
make a quantitative determination of the structure of the most important super- 
critical modes. 

Formulation of the normal-mode theory is along lines similar to those given, 
for example, in the recent book by Eckart (1960), but requires an extension of the 
latter analysis to include effects of viscosity and heat conduction. An important 
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aspect of this formulation is that it proceeds directly from the momentum form 
of the hydrodynamical equations, rather than from any derived form obtained 
by elimination of variables. This leads to a normal-mode problem in which the 
exponential growth rates are characteristic values. The physical interpretation 
of the normal-mode spectrum used in this study lies in the fact that the norm of 
the spectrum (the square sum of spectral amplitudes) is equal to the kinetic plus 
thermal ‘variance ’ of the given state of finite-amplitude convection. 

The foregoing procedure makes it possible to represent an arbitrary state of 
finite-amplitude convection, associated with particular values of the Rayleigh 
number and Prandtl number, as a linear combination of normal modes asso- 
ciated with the same values of these parameters. Formal spectral inversion of 
the governing hydrodynamical equations then leads to spectral-dynamic equa- 
tions, which are a statement of the governing equations in the spectral domain. 
This process is familiar in turbulence theory, where the conversion usually is 
made by means of Fourier transforms. However, it  should not be overlooked that 
the spectral domain may be well-suited for problems in laminar as well as turbu- 
lent motion. Moreover, formal development of the spectral theory is in most 
respects more straightforward in terms of the modes associated with the variance 
spectrum than by means of Fourier transforms. For the B6nard problem, the 
theory is in any case mathematically elementary, and for this reason is developed 
here from first principles, without any attempt to draw parallels with turbulence 
theory. 

The spectral-dynamic equations can be regarded as posing an initial-value 
problem, the solution of which gives the evolution of the spectrum from an 
initially prescribed state (for example, see Saltzman 1962 and Herring 1963). 
Alternatively, if the time-derivative terms are put equal to zero (and if the 
spectrum is discrete), they are an infinite set of quadratic algebraic equations. 
If a solution of the latter equations exists for prescribed values of external para- 
meters, it gives the equilibrium spectrum that corresponds to a steady (although 
not necessarily stable) state of convection. The work reported here is concerned 
only with this steady-state view of the problem. Moreover, only laminar con- 
vection is considered; thus, the spectrum is at equilibrium because the motion 
actually is steady, rather than as a result of stationary turbulence processes. 

The spectral-dynamic equations cannot be solved exactly. However, in 
moderately supercritical states where the motion is still laminar and steady 
convection is possible, the primary self-excited mode may be expected to 
dominate the spectrum. It follows that good estimates in this source region of the 
spectrum may come from an approximation in which the spectrum is truncated 
by excluding all modes except the primary self-excited mode and those that 
predominate in interactions involving this mode. If truncation of the spectrum 
is severe, it  may be possible to solve the correspondingly truncated spectral- 
dynamic equations without excessive numerical labour. This is the underlying 
approach that is used in the present investigation. 

The programme outlined above represents in a sense an extension of an earlier 
investigation by Kuo & Plateman (1961, modified subsequently by Kuo 1961). 
However, because the former study was based upon marginal rather than 
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supercritical states, the outcome was not completely satisfactory from the 
standpoint of spectral analysis. The basic idea of spectral analysis and truncation 
has been used in a variety of hydrodynamical problems, beginning with the 
attempt by Reynolds to arrive at a criterion for the instability of Poiseuille flow. 
An investigation that has particular relevance for the present work is that of 
Stuart (1958), who showed that estimates of Reynolds stress in slightly super- 
critical states can be obtained from quadratic integrals of the governing equations. 
The use of such integrals to derive estimates of the critical Reynolds number was 
demonstrated first by Reynolds himself. Stuart carries their application one step 
further, by showing that they provide a basis for estimating the amplitude of the 
secondary flow as well. In  the examples given by Stuart the secondary flow is 
represented in terms of the marginal state of the self-excited mode, but the 
method also applies to a representation in terms of the spectrum associated with 
the supercritical state for which the amplitude of secondary flow is sought. 
Speaking now of the B6nard problem, it is shown in this paper that the heat flux 
obtained from Stuart’s method applied in the latter sense is the same as that 
obtained from the spectral-dynamic equations by a truncation that excludes all 
convective modes except the primary self-excited mode, but includes in general 
all antisymmetric thermal modes (of which there is an infinite number). It should 
be added that this equivalence is contingent upon the use of the integral for 
kinetic plus thermal variance, rather than that for thermal variance alone. 

Before proceeding further, I must take note of several recent papers which have 
points in common with methods or results to be given here. (As is inevitable in a 
field undergoing rapid cultivation, some of these were published or came to my 
attention after the present work was completed.) A paper by Spiegel (1962) is 
especially germane, since it utilizes the spectrum of supercritical normal modes, 
as well as the distinction between what I have called ‘free’ and ‘forced’ convective 
modes (see also Ledoux, Schwartzschild & Spiegel 1961). The impossibility of 
steady, finite-amplitude convection at subcritical Rayleigh number (Q 4) has been 
proved also by Howard (1963) and Sani (1964). The papers by Palm (1960), Segal 
& Stuart (1962) and Segel (1962) certainly are essential for an understanding of 
the stability properties of truncated spectral equations, and the related problem 
of the horizontal plan form of convection. Finally, reference should be made to 
the well-known mathematical similarity between the problem of heat convection 
across horizontal, parallel planes and that of momentum convection across 
rotating, concentric cylinders. The work of Stuart (1960), Watson (1960) and 
Davey (1962) is particularly noteworthy in connection with finite-amplitude 
aspects of the latter problem (see also Stuart 1963). 

2. The governing equations 
The equation of state is assumed to be p’ = ph(1 -a’#’), where ph can be 

regarded as a mean density of the fluid as a whole, so that 9‘ is the excess of 
temperature over that which corresponds to mean density. Variations of the 
thermal expansion coefficient a‘, the thermal diffusivity K’ and the kinematic 
viscosity v’ are ignored. 
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The temperature field 8‘ can be split into a linear, static part 8; - R‘z‘ plus a 
residual, dynamic part T’. Here R’ = A$‘/d’ is the uniform static-temperature 
‘lapse rate’, where d’ is the distance between horizontal boundaries and A$’ is 
lower-boundary temperature minus upper-boundary temperature; thus, A8‘ and 
R‘ are positive for a statically unstable arrangement. The axis of z’ is vertical and 
its direction is opposite to that of gravity. 

For reduction to non-dimensional quantities we adopt the following units: 
length d’; time df2(K’v’)-*; temperature ~‘v’(g’a’d’~)--~. The dimensionless viscosity 
coefficient, diffusivity coefficient and static-temperature gradient are then 

V = (V’/K’)*  = pi, 

K = (K’/V’)f = P-4, 

R = Rg’a’d’4/K’V’, 

where P = v’/K’ is the Prandtl number and R is the Rayleigh number. Note that 
VK = 1, a relation used frequently in the sequel. Further, the dimensionless value 
of g’a‘ is ga = 1. 

The non-dimensional equations governing conservation of momentum, energy 
and mass are &/at = - v.Vv+ vV2v + kT - Vw, 

aT/at = -v.VT+KV2T+Rk.V, (2.lb) 

( 2 . 1 4  

v . v  = 0, (2.2) 

where v and V are the three-dimensional velocity vector and gradient operator, 
and k is an upward-directed unit vector. In  the first equation w is the fluid 
pressure divided by the mean density, on the understanding that we exclude 
from w the hydrostatic pressure associated with the mean density and with the 
static-density gradient that corresponds to 8,, - Rz, so that only the buoyancy 
term kT remains in the gravitational force. These equations incorporate the 
Boussinesq approximations, the principal feature of which is neglect of effects of 
dynamically-produced density variations upon momentum and mass fluctua- 
tions. Similar effects of static-density variations also are neglected here because 
we deal with a thin layer of fluid.t 

Owing to the solenoidal character of v, the pressure field a is a passive variable 
in (2.1). In  other words, for prescribed values of external parameters (R and P) 
and given boundary conditions, the state of convection can be regarded as com- 
pletely specified by the vector 

since w is determined implicitly by v, T through the equation that results by 
taking the divergence of (2.1 a). The governing equation for the state vector S is 

aslat = - V . v s + g s - G ,  (2.4) 

g =  (’” ‘ ) ,  G E  (‘r), Rk. K V ~  
t Further details are given in the book by Chandrasekhar (1961). 
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an obvious restatement of (2 .1) .  The linear operator 9 expresses the effects of 
viscosity ( vV2) ,  buoyancy (k), heat conduction ( K V ~ ) ,  and heat convection in the 
static part of the temperature field ( R k .  ). It is a function of R and P ,  and repre- 
sents all linear physical processes relevant to the BBnard problem. Non-linear 
effects are contained in the convection term v .  VS, and implicitly in the pressure- 
gradient term G. As explained above, the latter is a function of s; however, the 
explicit form of this relation is not needed in the subsequent analysis. 

A quantity that is fundamental for spectral analysis of (2 .4)  is the ‘inner 
product’ of two states of convection S and S’ 

- (S, S’] = V. V’ + R- lTT’ .  (2.5) 
Here 0 signifies a volume integration that extends over the entire space in which 
the fluid is contained, or over one complete cell if the motion is assumed to be 
spatially periodic. The two states S and S’ whose product is taken in the manner 
defined in (2 .5)  must be associated with the same external parameters R and P 
and with the same boundary conditions. This provision is necessary for self- 
adjointness of the operator 9 that appears in (2 .4) ,  as will be seen below. 

An important special case of (2 .5 )  is S’ = S ,  which gives the variance of S 

{ S ,  S} = v2 + R-lT2. (2.6) 
Inasmuch as this investigation is concerned exclusively with R > 0 (gravitational 
instability), the product (S, S} is positive definite for any S .  

Balance equations for K _= v2 and H = R-lT2 come from multiplication of 
(2.1 a) by 2v and (2.1 b )  by 2R- lT .  After transformation with the aid of (2 .2) ,  the 
balance equations are 

aKlat = 2wT - div fK - 4veii eii, ( 2 . 7 ~ )  
aH/at = 2wT - div fH - ~ V R - ~ ( V T ) ~ .  (2 .7b)  

They show that there is equipartition in production of kinetic and thermal 
variance, at  the rate 2wT (proportional to upward convective heat flux). The 
fluxes fK = v K  - 4 v v .  8 + 2 v m  and fH = V H  - KVH express internal redistribu- 
tion of variance. Here d = eii 3 $(auijaxi+au,/axi) is the deformation tensor. 
The last terms in (2 .7)  are positive definite; they evidently represent dissipation 
of variance. 

The connexion between variance and energy merits some comment. After 
multiplication by + 4, equation ( 2 . 7 a )  becomes a balance equation for kinetic 
energy 47. Similarly, after multiplication by -4, equation (2 .7b)  becomes a 
balance equation for - &R-lT2, the ‘ thermobaric’ energy (Eckart 1960) or 
‘ available potential ’ energy (Lorenz 1955). In the energy equations the leading 
terms on the right are, respectively, + wT and - wT; hence, in these equations, 
u f  expresses the rate of conversion from thermobaric to kinetic energy, so that 
in the absence of viscosity, heat conduction and boundary fluxes, the kinetic plus 
thermal energy +(v2 - R-lT2) is conserved. However, under gravitational 
instability, the latter expression is not positive definite and therefore cannot be 
the norm of an orthogonal basis. This explains the relevance of kinetic plus 
thermal variance v2 + R-lT2 for spectral analysis. 

- 

I 
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In  association with certain boundary conditions the operator 9 in (2.4) is self 
adjoint; that is 

{ S , 9 S f }  - { 9 S ,  S')] = 0. 

To show this, we start from the definition of inner product (2.5), and find that 
the left side of (2.8) can be written 

div [B(S, S') - B(S', S)], 
B(S, S') E 2vv.b'+ R-~KTVT'. 

Therefore, 9 is self-adjoint if boundary conditions cause the normal components 
of B(S, S') and B(S', S) to vanish on all boundaries. From the definition of B it  is 
clear that this will be true if the viscous flux 2vv. 8' and the conductive flux 
R-~KTVT' have zero normal components on all boundaries. These conditions are 
satisfied in all cases of practical interest; details are given elsewhere (Platzman 
1964, pp. 20-4).t 

3. The normal modes 
If the non-linear terms v.  Vv and v.  V T  in (2.1) are omitted, there are solutions 

of the form (v,, T,, w,) exp gat, where v,, T,, w, are continuous space-dependent 
functions, (ra is an amplification factor, and a is a wave-number vector. These are 
the normal modes associated with (2.1) and (2.2). They must satisfy the normal- 
mode equations 

CT, V, = vV'V, + kT, - V W ~ ,  

cr, T, = KV~T, + Rw,, 
v.v, = 0, 

( 3 . 1 ~ )  

(3.lb) 

(3.2) 

and appropriate boundary conditions. In  terms of the modal state vector 
S, E (v,, T,) and the modal pressure-gradient vector G, = (Vw,, 0) ,  equations 

(3.3) (3.1) are 
S S ,  = C, S, + G,, 

in accordance with the definition of L? in (2.4). 
The normal modes S, form an orthogonal set, and the normal roots ra are real. 

This depends in the usual way upon the fact that 9 is self-adjoint, and also upon 
the orthogonality of any S to any G 

(3.4) 

Here the first equality comes from the definition of inner product, the second 
from the solenoidal property of v, the third from the vanishing of the normal 
component of v on all boundaries. Now consider two modal states S = S: 
(complex conjugateof S,) and S' = S,. From (2.8) with the aid of (3.3)and (3.4), 

(3.5) 
we find 

When R > 0 the variance (S:, S,} is positive definite; therefore g: = cr,, so all 
modes are non-oscillatory under gravitational instability. This proves the well- 

-~ --  
(S, G} = v.Vw = divvw = 0. 

( f f ~ - r : ) ( S , * , S B }  = 0. 

t It has been possible and advisable to shorten the present paper by occasional reference 
to an earlier, more complete version (Platzman 1964). The latter was prepared a.s a technical 
report for limited distribution before the present paper waa submitted for publication. 
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known principle of ‘exchange of stabilities ’ , whereby free convection appears 
first as a steady motion, rather than as an oscillation. 

Since (T, and therefore S ,  are real, the asterisks in (3.5) are superfluous. Hence 
any two modes with distinct roots (T, + (T, are orthogonal: {S,, S,] = 0. If 
(T, = ( T ~  but S ,  $: S,, we can orthogonalize, if necessary, in the usual way. These 
results are contained in the orthonormality statement 

in which the normalization adopted is such that each mode has unit variance. 
More specific information about S, and (T, is contingent, of course, upon 

solution of the characteristic-value problem (3.1) and (3.2) with appropriate 
boundary conditions. We consider now the general features of this problem that 
are important from the standpoint of spectral analysis.? For this purpose it is 
necessary to distinguish between three fundamentally different types of solutions 

of (3.1) and (3.2): thermal modes v = 0,  T $: 0, 

convective modes v + 0, T =+ 0,  

kinetic modes v + 0, T = 0. 

(The subscript CL is tacit throughout the discussion that follows.) 

(a )  Thermal modes 
We use the symbol r in place of T for the temperature field in a thermal mode. 
Since v = 0 in a thermal mode, (3.2) is satisfied trivially and ( 3 . 1 ~ )  reduces to 
V a  = kr, which means that neither w nor r can be functions of z or y. Therefore, 
(3.1 b)  reduces to KO% = ( ~ 7 ,  where D E a/&. If the origin for z is taken midway 
between the upper and lower boundaries, the solution that meets T = 0 a t  
z = & + i s  

(3.7) 

cosn7~z (n odd) ( sin nn-z (n even) 
r = (2R)4 

(T = -n2n2~,  

where n - 1 = 0, 1,2, .. . is the number of horizontal nodal planes, excluding 
boundaries. The cosine alternative in (3.7) gives symmetric modes (7 symmetric 
with respect to z = 0);  the sine gives antisymmetric modes. The normalization 
factor ( 2 R ) )  is a consequence of the general normalization specified in (3.6). The 
solution of (3.1) can be completed by solving for w from (3 . la)  which is now 
D a  = 7,  with r as in (3.7). Thus, the thermal modes can be determined easily and 
completely; all are damped (a < 0). 

(b )  Convective modes 

A solenoidal vector field v can be partitioned into a ‘poloidal’ part v4 and a 
‘toroidal’ part v$ (for example, see Chandrasekhar 1961, p. 622). For slab 
geometry v4 = - curl2 k$ = - DV# + kV2#, ( 3 . 8 ~ )  

Y+ = - c d k $  = k x V$, (3.8b) 

t Construction of solutions (analytic and numerical) is summarized elsewhere (Platzman 
1964, pp. 82-94). 
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where D = a/&. It is evident that V~ andv+ are individually solenoidal; moreover, 
curl v+ is toroidal and curl v$ is poloidal 

curlv+ = curl (kV2$) = - k x V(V2q5), 

curl v+ = - curl2 (k$) = - DV$ + kV2$. 

Thus, a poloidal velocity field has horizontal vortex lines but generally three- 
dimensional streamlines, whereas a toroidal velocity field has horizontal stream- 
lines but generally three-dimensional vortex lines. 

We use the symbol 0 in place of T for the temperature field in a convective 
mode. According to (3.8a), w = @q3 (where 6 is the horizontalgradient operator), 
so the poloidal velocity can be regarded as determined by w. To determine 8 and w, 
apply - D 6  to the horizontal part of (3.1 a),  Q2 to the vertical part, and add the 
results. This eliminates m; i t  also eliminates the horizontal velocity vector G 
because 6 .$ = - Dw by (3.2). If (3.1 b)  is paired with the equation thus obtained, 
we have (a  - VV2) v2w = 920, 

(a- KV') 0 = Rw. (3.9) 

We assume no slip and uniform, constant temperature at horizontal boundaries 
( z  = If: 4)) and conditions of symmetry at vertical boundaries? 

D2w = w = # = 0 on horizontal boundaries, 

awlan = aelan = 0 on vertical boundaries. 
(3.10) I 

The solution of (3.9) subject to (3.10) has the form (Pellew & Southwell 1940) 

(3.11) 

where f (x, y) is a characteristic function of the problem 

- @j = a y  (3.12) 

(af/an = 0 on the vertical boundary), and W(z) ,  O(z)  are characteristic functions 

(D2-a2)[a-v(D2-a2)] W = -a2@, of the problem 

[ C T - K ( D ~ - ~ ~ ) ] O  = RW 
(3.13) 

(D2W = W = 0 = 0 on horizontal boundaries). 
For particular values of parameters u, R, P the characteristic-value problem 

(3.13) generates a discrete spectrum of admissible values of a. These values 
consist of all roots of the diagnostic equation 

A(a ;  a, R, P )  = 0. (3.14) 

This aspect of the a-spectrum obviously corresponds to the vertical structure of 
convective modes. In  accordance with (3.12) the parameter u itself belongs to a 
discrete spectrum : this aspect of the a-spectrum evidently reflects the horizontal 

t A full discussion of boundary conditions is given elsewhere (Platzman 1964, pp. 20-24) ; 
see also Stuart (1964). 
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structure of convective modes. Closer analysis of the diagnostic equation reveals 
that the cr-spectrum consists of two simply denumerable subspectra. One of 
these subspectra corresponds to convective modes in which average convective 
heat flux is from hot to cold boundary. We shall call these free convective modes, 
and denote their cr-values by a,’ (n = 1,2,3,  . . .). The other subspectrum corre- 
sponds to convective modes in which average convective heat flux is from cold to 
hot boundary. We shall call these forced convective modes, and denote their 
cr-values by cr; (n= 1,2,3,  .. .). A forced mode is necessarily damped (a; < 0); 
a free mode may be amplified, neutral or damped (cr: > 0, = 0 or < 0). 

According to (3.8a), the po12idal velocity has a horizontal part 8, = -VD$ 
and a vertical component w = V2$. With w as in (3.1 l),  the function $ that meets 
Q2$ = w, and the corresponding 8,, are 

(3.15) 

(3.16) 

This completes the formal determination of the poloidal part of the convective 
modes with lateral conditions of symmetry.? 

In  accordance with (3.8 b ) ,  the toroidal part of the velocity in a convective mode 
is represented by a stream function @. The equation to be satisfied by $ is 
obtained by taking the horizontal curl (6 x ) of (3.1 a) : 

(VV2 - cr) 62@ = 0, (3.17) 

the equation for vertical component of vorticity. Equation (3.1 7)  obviously 
contains no reference to the poloidal velocity; and conversely, the differential 
equation (3.9) (which determines thepoloidalvelocity) contains no reference to the 
toroidal velocity. In  other words, in a convective mode there is no coupling 
between poloidal and toroidal components through the differential equations- 
such as would arise, for example, in a rotating system. Moreover, cr in (3.17) is not 
a free parameter because its spectrum is determined by the characteristic-value 
problem associated with the poloidal component. 

It follows that a convective mode can have a toroidal component only if the 
two components are coupled through boundary conditions, in which case (3.17) 
represents a boundary-value problem. It also can be shown (Platzman 1964, 
pp. 37-8) that there is no coupling between poloidal and toroidal velocities at 
horizontal boundaries (rigid or ‘free’), and that there is no coupling at  vertical 
polygonal boundaries with conditions of symmetry. Therefore, in convection 
which tessellates an infinite plane, the velocity field in a convective mode is purely 
poloidal.1 

In  this investigation, detailed numerical results have been obtained only for 
lateral conditions of symmetry. Since the horizontal velocity of a convective 

t A no-slip condition at  vertical boundaries does not permit a solution in which the 
z-co-ordinate can be separated from 5 and y. Details of this case are given elsewhere 
(Platzman 1964, pp. 82-3). 

$ If no-slip conditions are imposed on vertical boundaries, the velocity field of a 
convective mode must have a toroidal component which is coupled to the poloidal com- 
ponent through the lateral boundary conditions-in other words, through the viscous 
boundary layer on the vertical boundary. 
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mode is purely poloidal, we have 6 = 9$ with 6, as in (3.16). If this expression 
for 6 is used in conjunction with (3.11) for w and 8, the requirement (3.6) that 
each mode have unit variance can be stated 

(f 2)[a-2((oW)z + w2 + R-@] = 1, 

where (( )) = JJ( ) dxdy and (7 = J( )dz signify horizontal and vertical integra- 
tion between the boundaries. (To obtain this result, it is necessary to use the 
identity ( ( $ f ) 2 )  = a2(f2)  which comes directly from (3.12).) The preceding 
equation will be satisfied by choosing 

(3.1 8 a)  

(3.18 b )  
(f2) = 17 

u-~(W+ W2+R-1@ = 1. 

These are the partial normalizations used subsequently. 

( c )  Kinetic modes 

From (3.1 b)  it  is evident that w = 0 when T = 0, so in a kinetic mode the velocity 
field is purely horizontal. Moreover, (3.2) reduces to 0 . v  = 0, so v can be repre- 
sented by a stream function: v = k x V$. In  other words, the velocity field of a 
kinetic mode is purely toroidal. The analysis of this field is similar to that for the 
toroidal part of a convective mode.? In  particular, the differential equation for 
$ is (3.17). All kinetic modes are damped. 

4. The spectral-dynamic equations 
Consider an arbitrary state S of finite-amplitude convection, which satisfies 

the governing equation (2.4) for specified R and P, and appropriate boundary 
conditions. Let S, be the normal modes associated with the same values of R 
and P and the same boundary conditions. Subject to quadratic integrability of 
S and completeness of the S,, we have the expansion 

(4.1) S ( x ,  Y, 2, t )  = z A a V )  Sa@, y, z), A,  = {S,, S} ,  

( S ,  S} = z A: 

a 

in view of the orthonormality (3.6). Moreover, the associated Parseval relation 

(4.2) 
a 

shows that A2, constitutes the variance spectrum of S .  If the spectrum is not 
completely discrete, the sums over a should be interpreted as including integra- 
tion over continuous portions of the spectrum. However, we need be concerned 
here only with states of S which can be represented by a completely discrete 
spectrum, because the normal-mode equations (3.3) are free of singularities, and 
because boundary conditions are applied over a finite region. 

The governing equation (2.4) can be transformed to the domain of the expan- 
sion coefficients A,  as follows. If A,  = {S, ,  S }  is differentiated with respect to t ,  
and aS/at then replaced by (2.4), we have 

dA,/dt = {Sa, 9 s )  - {Sa, V. VS}, 

t Details are given elsewhere (Platzman 1964, pp. 40-3). 
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since {S,, G} = 0. The first term can be rewritten with the help of (2.8) and (3.3), 
and the fact that (G,, S> = 0. The preceding result is then 

dA,/dt = f l u  A ,  - {S,, V .  V S } .  (4.3) 

Thus far, the transformation depends upon existence of the A,, but not upon 
validity of the expansion (4.1). Assume now that this expansion is valid, and 
substitute expansions for v and S in the convection term v .  VS; then 

dA,/dt = g, A ,  - z Z A P  A,{S,, vB. VS,} .  (4.4) 
B Y  

The spectral-dynamic equation (4.4) poses an initial-value problem for the expan- 
sion coefficients, in terms of an infinite system of quasi-linear, ordinary time- 
differential equations of first-order with constant coefficients. It expresses the 
‘speed’ of each expansion coefficient as the sum of a linear, modal term raAa 
(exponential effect), and a non-linear, convection term which is a quadratic form 
over all coefficients. The ‘coupling integrals’ {S,, v8 .VSy} of this quadratic form 
are completely determined by the structure of the normal modes, and therefore 
are known in principle. In  a steady state of convection, the spectral-dynamic 

(4.5) 
equation reduces to 

an infinite set of quadratic, algebraic equations for the A,. 
It is illuminating to examine the spectral form of the balance equation for 

variance {S, S}. Thus, if (4.3) is multiplied by A ,  and summed over a, the con- 
vection term becomes { S ,  v .  V S } ,  which is zero because of the solenoidal character 
of v; hence 

c a  ’a = Z XAA,Ay{Sa,vB*VSy),  
B Y  

It is clear now that in the spectral-dynamic equation (4.3) or (4.4) the linear, 
modal term c, A ,  represents generation of variance, whereas the non-linear, con- 
vection term represents exchange of variance across the spectrum. An amplified 
mode contributes positive generation of variance, a damped mode negative 
generation. It sometimes has been suggested that a steady state of convection 
can exist for subcritical values of the Rayleigh number provided the amplitude 
of convection is sufficiently large. Equation (4.6) shows that this is not possible, 
for in a subcritical state all modes are damped, so the right side of (4.6) is 
negative definite. The variance in any subcritical state therefore is a monotone 
decreasing function of time.? 

The complete spectral-dynamic equations cannot be solved in closed form- 
However, any state of finite-amplitude convection can be approximated by 
truncating the spectrum of this state; that is, by assigning zero values to all 
expansion coefficients except those belonging to a selected group of dominant 
modes. Let Ssignify the wave-number vectors of modes in the truncated spectrum, 
and let S be an approximation to S that spans 6 

(4.7) 8 (x, Y ,  2, t )  = c A&) S6@, Y ,  21, A, = p a ,  s>. 
6 

t An equivalent proof haa been given by Howard (1963). 
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The approximation S will be specified now by asserting that the A, satisfy the 
truncated spectral-dynamic equation 

dA,/dt ='U,A,-{S,,+.VS}, (4.8) 

in place of (4.3). Equation (4.8) is formally identical to (4.3), but in fact differs 
from (4.3) significantly because in the convection term of (4.8) each of the factors 
+ and S spans only the truncated spectrum. If the truncation is severe, it is possible 
that (4.8) can be solved for the A,. 

The nature of the approximation S determined by (4.8) can be understood from 
the result of multiplying (4.8) by s, and summing over 6; since cr8 s, = 9s8  - G8, 
we get 

&/at = 9 s  - (+. VS), - G ,  
( + a  VS), {s,, VS} s,, 

8 

where G I CA,G,  and (+.VS)m denotes an approximation-in-the-mean to 

+ . V S ,  namely, the approximation that spans the set 6. Thus, although the 
spectrum of 6 is limited to 6, that of the quadratic form + . V S  is not. To this 
extent the approximation S fails to satisfy the governing equation (2.4). It 
should be noted that S is not an approximation-in-the-mean to S ,  in the sense 
that for the specified truncation the residual variance { S  - S, S - S} is a minimum 
with respect to A,. In fact, the A, determined by (4.8) are such that they are 
altered, in general, by altering the set 6, so they are not the true expansion 
coefficients of S .  Nevertheless, we shall adopt the working assumption that close 
approximations to the true expansion coefficients can be obtained from truncated 
spectral-dynamic equations if the truncation is made in a reasonable way. We 
turn next to some considerations that form the basis for the truncation procedure 
adopted in this investigation. 

The distinction has been made previously between thermal modes (v, = 0, 
T, = T,  + 0 ) ,  convective modes (v, p 0, T, = 8, += 0 ) ,  and kinetic modes 
(v, + 0, T, = 0). For completeness the expansion (4.1) must span all three modal 
species; thus, in general S = S' + S" + S", where 

8 

S' (7") , S" (T), S" (T) (4.9) 

are, respectively, the parts of S that span thermal, convective and kinetic modes. 
The structure of thermal and convective modes is such that T = ~ ( z ,  t ) ,  whereas 
(8)  = 0 in view of (3.12). Thus the partition T = T + 8 is the same as partition of 
T into a horizontal average T = (T) and deviation 8 = T - (T). 

Any realistic approach to truncation of the spectral-dynamic equation must 
begin with partition of this equation into the three equations that govern the 
spectral dynamics of each of the three modal species. Using primes to identify 
these species, in the sense indicated above, and starting from (4.3), we have 

dAL/dt = U: A; - {SL, V .  VS}, 
dAi/dt = U: A: - {S:,  V .  VS}, 
dAt/dt = uIAI - {Sa, V .  VS}. 
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Consider the convection term in the first of these equations 
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-___ 
{Sh, v . VS> = R-%, v . V T  = R-17, (V . vT) 

= R-4,  D (wT) = R-%, D (we). 

The first equality involves the definition of the inner product and the fact that 
vh = 0;  the second comes from the facts that r, is a function of z only and that v is 
solenoidal; the third is a result of v having zero normal component on lateral 
boundaries; and the fourth makes use of the fact that r is a function of z only, 
whereas {w) = 0 (in view of (3.12)).  (It should be noted that w = w”, since w” = 0 
owing to the toroidal character of v”.) 

After similar transformations are made in the other convection terms, the 
partitioned spectral-dynamic equations can be written 

dAi /d t  = C T ~  A: - R-17, D (we), (4.1 0 a) 

- v;. (v. V) V”- v;. (v .V) v”, (4.10b) 

(4.10 c )  
- 

dA:/dt = CT:A: - V: . (V . V) V” -v:. (V . V) v”. 

The seven convection terms in (4.10) can be classified as corresponding to internal 
exchnge or external exchange of variance. Thus, if the three equations in (4.10) are 
multiplied, respectively, by Ah, A:, A: and then summed, respectively, over the 
portion of the spectrum spanned by each of the three modal species, we obtain 
balance equations for the corresponding parts of the variance spectrum. These 
equations need not be written explicitly, but it is clear that as a result of the 
operations just described, the second and third convection terms in (4.10b) are 
nugatory, owing to the solenoidal character of v. These terms therefore express 
internal exchange of variance within S”. Similarly, the first convection term in 
( 4 . 1 0 ~ )  expresses internal exchange within S”.  The remaining four convection 
terms evidently represent external exchange of variance, that is, exchange 
between two different parts of the spectrum. Thus, the convection term in ( 4 . 1 0 ~ )  
and the first in (4.10b) express exchange between S’ and S “ ,  and the last terms 
in (4.10b) and ( 4 . 1 0 ~ )  express exchange between S” and S”. 

The leading terms on the right in (4.10) represent generation of variance within 
each of the three parts of the spectrum. It is evident that variance generation by 
thermal and kinetic modes is negative definite, because all of these modes are 
damped. Hence, a steady state can exist only if variance is supplied by external 
exchange from the convective part of the spectrum to the thermal and kinetic 
parts. (Note that there is no external exchange between kinetic and thermal 
modes.) These circumstances are portrayed schematically in figure 1. 

Inspection of ( 4 . 1 0 ~ )  confirms that the thermal part of the variance spectrum 
is not affected by internal exchange. (This results from the fact that the governing 
equations are bilinear, rather than quadratic, in temperature.) In  other words, 



494 George W. Platzman 

there is no explicit non-linearity in ( 4 . 1 0 ~ )  with respect to expansion coefficients 
A:. Consequently, this equation can be ‘solved’ as follows: 

A#) = AL(0) exp ck t - R-1 7 ,  D (w6) exp c$ - T) d T .  (4.11) 

I 
4 I 

1 Variance reservoir 

FIGURE 1. Schematic representation of  variance balance between thermal, convective and 
kinetic modes. Horizontal arrows represent exchange of variance, vertical arrowsgeneration 
of variance. Directions are those appropriate for a steady state. 

If  this expression is multiplied by r, and then summed over the spectrum of 
thermal modes, the result is an explicit formula for ~ ( 2 ,  t )  in terms of the initial 
spectrum A&(O) of thermal modes and the function {we), which depends only upon 
the convective part of the spectrum. Another way to arrive at the same result is 
to note that ( 4 . 1 0 ~ )  is the spectral form of 

a T p t  = K P ~  - D(we), (4.12) 

the horizontal average of the governing equation (2.1 b )  ,with T = (T) .  If (4.12) 
is solved for T ( Z ,  t )  by means of an appropriate Green’s function, the term D(w0) 
being regarded as an inhomogeneous part of the equation, the result will be the 
same as that deduced from (4.11).  

If Dr thus determined is inserted in the first convection term of (4.lOb),  the 
thermal part of the spectrum will be completely eliminated, and the spectral-dynamic 
equations will be ‘closed’ on the convective and kinetic modes. (It should be 
noted that after elimination of Dr in this manner, the first convection term is 
cubic in the convective expansion coefficients A:.) For unsteady convection this 
elimination brings (4.10 b)  into the form of a differential-integral equation, but 
in a steady state the equations are algebraic and the elimination leads to a simple 
result. In  a steady state (4.12) implies that 

KDT = {we) + const. 

The constant can be evaluated from the fact that 07 = 0 since T = 0 at horizontal 
boundaries ; therefore 

KDT = {we) - {a) (steady state) (4.13) 

a well-known fundamental relation. Equation (4.13) can be integrated in 
principle, to obtain T ;  but in fact for elimination in (4.10b) we need Dr rather 
than T.  

The foregoing analysis can be summarized as follows. We have seen that any 
state of convection can be partitioned into three parts 

S’ (thermal) + S” (convective) + S”’ (kinetic), 
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each of which spans one of the three distinct modal species. Variance of S' and S" 
is always dissipated because thermal and kinetic modes are wholly damped. I n  
a steady state, variance balance is maintained through generation within S" by 
self-excited convective modes, and transfer from S" to S' and S" (figure 1). It is 
apparent that S" plays a crucial role in this process; and of course it is within S" 
that the convective flux of heat is accomplished. Owing to the fact that the 
spectrum of S' cannot be altered by internal exchange, the spectral-dynamic 
equation for S' is linear and can be solved explicitly. This makes possible 
the complete elimination of S', so that the spectral-dynamic equations can be 
closed on S" and S". Accordingly, the procedure that we shall follow for spectrum 
truncation is to retain the complete spectrum of S', while truncating the spectrum 
of S" and that of S" very severely. 

5. The spectrum of plane tessellation 
We examine briefly the characteristic-value spectrum of convective modes 

under tessellation of the infinite plane. This consists of the roots of the diagnostic 
equation (3.14), in which a, R, Pare  parameters. It has already been pointed out 
that the roots of this equation can be divided into two groups, denoted a,+ and 
a; (n= 1 ,2 ,3 , .  . .): the former corresponds to free modes, the latter to forced 
modes ( 0  3). We restrict attention now to the free convective modes with maxi- 
mum u i  for given a, R, P. Call these the primary convective modes. Assuming 
the index n to be chosen so that ut > u$ > u$ > . . . , the root that belongs to the 
modes in question is a;+. Since the horizontal wave-number a itself belongs to a 
discrete spectrum, namely the characteristic-value spectrum of (3.121, the 
primary convective modes and the associated values of u$ form a discrete sub- 
spectrum of free convective modes (for given R, P). 

The diagnostic equation may be portrayed by means of the familiar diagram 
with axes R, a-in which the roots u are represented as functions of R and a 
(for fixed P) by level curves (diagnostics) cr = const. An example of such a 
diagram is shown in figure 2.7 In  figure 3 the curve marked ut = 0 is (schemati- 
cally) the diagnostic of marginal stability for primary convective modes. To the 
left of a$ = 0 these modes are damped, to the right they are amplified. Hence for 
R < 3, (the minimum R for which the primary can be amplified) all free modes 
are damped and a steady state is not possible. If R > B,, a finite-amplitude 
steady convection is possible, in principle, in which variance balance is main- 
tained through self-excitation of the primary mode. 

Consider now the problem of plane tessellation, in which the finite-amplitude 
convection is steady and is arranged in a periodic cellular pattern over an infinite 
plane. For the sake of being explicit in the simplest possible terms, the argument 
will be illustrated by the case of infinite rolls, with lateral cell boundaries formed 
by vertical parallel planes. If L is the distance between successive planes, the 
admissible values of a in this case are integral multiples ha, (k= 1,2,3, ...) of a 
fundamental value a, = T/L determined solely by the linear dimension L that is 
characteristic of the tessellation considered. We shall call the primary mode 

t Figure 2 is discussed elaewhere (Platzmm 1964, pp. 91-4). 
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associated with a, the fundamental primary mode. The definition of L is such that 
the fundamental primary mode must be the mode that becomes self-excited at 
R = R,, since otherwise L could not be the distance between successive cell walls. 
This means that at  marginal stability a, = a, and ak = lea,, as pictured in figure 3. 
For an infinitesimally supercritical value of R, we may postulate a steady con- 
vection in which only the fundamental primary mode is self-excited and all other 
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FIGURE 2. Diagnostic diagrams for 'free' boundaries, in terms of scaled parameters 
R/n4+, a/nn and u/n2n2. Solid curves are diagnostics of free modes (labelled with values of 
v+/n%Z); broken curves are diagnostics of forced modes (labelled with values of u-/nzn2). 
Dotted curves are contours of Im a/nznz in the region of oscillatory modes; contours of 
Re u/n2nZ in this region me horizontal straight lines. The boundary of the region of oscil- 
latory modes is indicated by heavy dots (the envelope of diagnostics of non-oscillatory 
modes). 

modes are maintained by transfer across the spectrum. Thus, if R is increased 
quasi-statically above the critical value R,, the finite-amplitude convection at  
each R presumably is a pattern of tessellation with a unique scale L that in 
some manner is determined by the prevailing value of R. On this view, the 
fundamental scale aI = r / L  is a definite function of R, such as is illustrated 
schematically by the lower broken curve in figure 3. 

The preceding discussion suggests that in a physically realizable process in 
which R increases quasi-statically through moderately supercritical states, each 
wave-number ak in the a-spectrum of primary modes will move along a charac- 
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teristic curve ka,(R) determined by that of the fundamental a,@). However, as 
is well known, if steady, finite-amplitude tessellation is assumed at the outset, 
the curve a,(R) is indeterminate within the frame-work of the problem-a lack 
of uniqueness which must be expected when steady solutions are sought in an 
infinite domain. Uniqueness might be established on a deductive basis by 

I I /  

FIGT~RE 3. Schematic diagnostic diagram. Solid curve is diagnostic of marginal stability 
for primary convective modes. Broken curves are characteristic curves for horizontal 
wave-number spectrum in the case of plane tessellation in infinite rolls. 

relaxing the requirement that the solution be steady, or that the domain be 
infinite, or both. However, for numerical computation of heat flux in this investi- 
gation (Q 6), uniqueness is established through two alternative ad hoc procedures. 
From a numerical standpoint, the simpler of these is based upon the supple- 
mentary condition 

which would be valid if the horizontal scale of the fundamental primary mode 
tends to the value for which this mode is in its linearly most unstable configura- 
tion. This procedure involves repeated solution of the diagnostic equation (3.14) 
for the root a,+, with a sequence of values of a aimed a t  convergence on the 
maximum a: (for specified R and P ) .  The alternative procedure used is based 
upon maximization of the heat flux itself. (This would be valid if the horizontal 
scale tends to the one for which the rate of entropy production is a maximum.) 
The supplementary condition in this case is 

a,+ = maximum with respect to a, (5.1) 

32 

N = maximum with respect to a, ( 5 4  
Fluid Msch. 23 
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where N is the Nusselt number. This procedure involves much more computation 
than (5.1),  because it requires not only repeated solution of the diagnostic 
equation, but also repeated construction of the functions W(z) ,  O(z). Neverthe- 
less, it is entirely feasible by means of a high-speed computer. 

Although not needed for the heat-flux computation to be described later, a few 
remarks will be made here about the spectrum of hexagonal tessellation, because 
of their relevance to the general problem of spectral analysis by normal modes. 
Let L be the side length of the equilateral hexagons that form the cell boundary, 
and place (x, y)-axes so that the origin coincides with the centre of the hexagon 
whose sides are given by 

( 4 4 3  k @) ( 4 4 3  + y * L)  ( 4 4 3  - $4 * L)  = 0. 

Then (3.12) generates the set of orthogonal functions 

1 2  
,fD(x, y) = (cos Re [p eiikn(z + iy)] + cos Re h* eiikn(x + iy)]), (5.3) 

k=O 
ap = 1p1 = (3P+m2)*47~/3L, 

p = ( I  4 3 + i m )  4n/3L. 

Here 1 and m are any two integers or halves of any two odd integers; in other 
words, 21 and 2m are any two integers having the same parity. Note that (5.3) has 
hexagonal symmetry in the plane of the wave-number vector p, as well as in the 
(x, y)-plane; i.e. $Jx, y) is not altered by rotation of p into p eiin or of x + iy into 
(x + iy) e*in. The vector p is two-dimensional, as required for completeness of the 
setfp. The normalization in (5 .3)  has been chosen to make$ = 1 for x + iy = 0, The 
function 

is normalized so that (f2) = 1 ,  in conformity with (3.18a). Here ep = 1 if 
argp = Ornodin; otherwise e, = 29. 

From the standpoint of spectral analysis of the variance cascade associated 
with horizontal structure, an important aspect of the setf, is the spectrum of the 
product f,fp. where p and p r  are two generally distinct vectors. By straight- 
forward application of (5 .3) ,  it  is possible to show that this product spans twelve 
members of the set. To express this result conveniently, we writef(p) instead of 
f,(x,y), on the understanding that x,y are held fixed. The multiplication 

fp(& y) = 2ep 3-4L-Yp(x, y) 

In  the light of the fact that$(p) is not changed by substitution ofp” orp e(n/3 forp, 
it can be seen that the right-hand side of (5.4) is symmetric in p and p,’. 

Christopherson (1940) gave the special solution that corresponds to I = 0 in 
(5.3).  However, for spectral analysis of hexagonal tessellation, it is necessary to 
build a two-dimensional spectrum. For example, consider the fundamental 
hexagon (Z, m) = (0 , l )  with wave-number vectorp = i4n/3L. The most important 
interaction within the horizontal wave-number spectrum is that of (0 , l )  with 
itself. It is easy to see from (5.4) (withp,’ = p = i 4n/3L) that three distinct modes 
are generated by this interaction, namely ( O , O ) ,  (0,2) and (&,$). The &st 
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corresponds to f =  const. and the second to the lowest submultiple of the 
primary. The latter is a hexagon with vertices at the same azimuths as the 
fundamental, but linear scale half that of the fundamental. (These two modes 
are analogous to the types that would be expected in self-interaction of a ‘cosine ’ 
mode in rectangular tessellation.) The third is not a submultiple of the funda- 
mental in the usual sense-that is, it is not of the form (0, m). It corresponds to 
the hexagon obtained by rotating the fundamental through an angle of 30°, 
and reducing its scale by the factor 43. 

6. The heat flux by primary convective modes 
The most rudimentary truncation having physical interest is one in which the 

convective part of the spectrum is reduced to a single mode, and all kinetic modes 
are discarded. Let E denote the wave-number vector of the convective mode that 
is retained. Then 8 = A,B, and V” = A,v,, so in (4.lOb) (with a = s) the second 
and third convection terms disappear. The fourth also disappears because 
v”’ = 0 in the truncation being considered. Since w = A, w,, the spectral-dynamic 
equation (4.10b) for A, becomes, in the steady state, 

~ _ _  
<WE e,) oT = ~ a & ,  (6.1) 

after removal of the factor A,. We now eliminate DT by means of (4.13), which in 
the case being considered reduces to 

(6.2) K DT = ({we 8,) - (x)) A:. 

After elimination of 0 7  from (6.1), we may solve for A: 

Here Q, is a x-dependent function proportional to the upward convective flux of 
heat by the s-mode. The introduction of W, and 0, is in accord with the normal- 
mode solution (3.11) and normalization ( 3 . 1 8 ~ ) .  To complete the solution of (6.1) 
and (6.2), it  is necessary to determine the function ~ ( x )  that spans the thermal 
modes. By insertion of (6.3) into (6.2); we obtain 

from which ~ ( x )  can be obtained by quadrature. 
Equations (6.3) and (6.4) give the explicit steady solution of the truncated 

spectral-dynamic equations in the case of truncation to a single convective mode, 
in terms of the associated growth rate a, and vertical functions W,, 0,. It is clear 
from (6.3) that this solution is meaningless unless the selected convective mode 
is in a self-excited state (a, > 0). Moreover, truncation to a single, self-excited 
convective mode is realistic only if the mode in question is a primary convective 
mode, that is, a mode having maximum a, for given a, R, P. It also is important 
to stress that a,, W,, 0, in solutions (6.3) and (6.4) represent structure of the self- 
excited mode at the supercritical value of the Rayleigh number for which these 
solutions are to be evaluated. 

32-2 
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The result obtained in (6.3) may be used to determine the heat flux associated 
with this rudimentary truncation. The total upward heat flux across an arbitrary 
horizontal plane is, in dimensional form, 

N' - k'D' (9') +pk C' (~'9') 

(conduction plus convection), where k' is the thermal conduction coefficient and 
c' a specific heat. If the dimensions are eliminated through division by 

k'A9'ld' = k'R', 
0 
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FIGURE 4. Characteristic functions W(z)  and O(z) for rigid boundaries, normalized to unity 
at z = 0. Broken curves are for marginal value R = R, (and are independent of P). Solid 
curves are for maximum u at R = 106, and for three values of P, as indicated. Dotted 
curves are for 'free' boundaries (and are independent of R and P). 

the result is a Nusselt number 

N = 1 - R-107 + ( K R ) - ~  (wO), (6.5) 

where K is the dimensionless thermal diffusivity K' = k'/pi c'. (To obtain (6.5) the 
partition 9 = 9,, - Rz + T + 19 was introduced, and also the fact that (w) = 0.) 
In  a steady convection DT is given by (4.13); this makes 

N = 1 + ( ~ R ) - l ( w e )  (steady state) (6.6) 

a well-known formula. 
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Equation (6.6) is an exact expression for heat flux in steady convection. In the 
case of truncation to a single convective mode, (we) = (w, 0,) A:; hence with 
A% as in (6.3) 

(6.7) N = 1 + ce S,/(Q, - &E)2, 
where Q, 3 W, 0,. By direct numerical analysis of (3.13), the functions W(x) and 
0 ( z )  were computed for a wide range of values of R and P ,  with wave-number a 
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FIGURE 5. Results of numerical computation of heat flux ( N ) ,  spectral amplitude (A) ,  
amplification factor (a), and horizontal wave number (a) .  Left panel: maximization of a; 
right panel: maximization of N .  Prandtl numbers are shown along upper and right borders 
of each diagram. Solid curves are for P > 1, dotted for P = 1, broken for P < 1. Heat 
flux is based upon spectral truncation to one convective mode. 

selected on the basis of alternative ad hoc uniqueness procedures (5.1) and (5.2). 
Figure 4 gives a representative selection of results. In  this figure the functions 
are normalized to unity at x = 0 in order to show the variation in shape of the 
curves as a function of Rayleigh number and Prandtl number. It is evident from 
the figure th& W(z)  and O(z) (when normalized in this manner) are remarkably 
insensitive to variations of R and P .  This is consistent with the fact that in the 
case of 'free' boundaries, the shape of these functions is strictly independent of 
R and P. 
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After numerical determination of W(z)  and O(x), the heat flux was computed 
from (6.7) with R in the range 3 < log,, R < 6 and for log, P = 0, k 1, k 2, & 3. 
Figure 5 shows the resulting values of N ,  together with the corresponding A ,  r 
and a. The diagrams on the left come from application of the uniqueness pro- 
cedure (5.1) (maximum r); those on the right come from application of (6.2) 
(maximum N ) .  In  general, the wave-numbers that maximize r are substantially 
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FIGURE 6. Experimental end theoretical determination of heat flux. Upper diagram: 
experimental data for water (P x 5) and theoretical curve for P = 5. (Broken curve is 
baaed upon Stuart’s method, from (6.13).) Lower diagram: experimental data for silicone 
AK-3 (0) (P k: 35) and for ethylene glycol (A)  (P k: 130), and corrmponding theoretioal 
curves. Experimental data are from Silveston (1958). Theoretical results are baaed upon 
spectral truncation to one convective mode. 

larger than those that maximize N ,  but these differences are not reflected 
significantly in r or A ,  and especially not in N .  

Chandrasekhar (1961) has summarized the principal experimental work on 
laboratory measurements of heat flux in the BBnard problem. For comparison 
with the theoretical results shown in figure 3, we quote the experimental work of 
Silveston (1968). Silveston’s apparatus was one in which the fluid was contained 
in a cylinder of circular cross-section with rigid horizontal boundaries. The 
diameter of the cylinder was 198 mm. The distance between horizontal boundaries 
was variable: the minimum used was 1*45mm, the maximum 12.98mm. Heat 
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flux was determined by an indirect method, in which heat losses involved in 
various parts of the apparatus were estimated and subtracted from the power 
supplied to the electrical heating element. 

Figure 6 contains a representative selection of the Nusselt numbers tabulated 
by Silveston in the range lo3 < R < lo5. The upper diagram shows data points 
for water, with Prandtl number in the range 3-5 < P < 6.6. The solid curve is 
our theoretical spectral estimate on the basis of (6.7), with P = 5. The lower 
diagram shows data points for silicon oil AK-3 (circles) with Prandtl number in 
the range 35 < P < 36, and for ethylene glycol (triangles) with Prandtl numbers 
in the range 126 < P < 138. The theoretical spectral estimates for these data are 
shown by the solid curves P = 35 and P = 130. For water ( P  = 5) the agreement 
between computed and observed heat flux is very good out to the surprisingly 
high value R = 35,000. However, for higher Prandtl numbers, the spectral 
estimate is valid only to about R = 4000. The principal discrepancy between 
spectral estimates and experimental data in figure 6 is that the experimental data 
do not show the predicted inhibition of heat flux with increasing Prandtl number. 

In  a typical boundary-layer configuration of the horizontal-mean temperature 
7 ( z )  - Rz, the transition between cold-boundary temperature ( -  4R) and hot- 
boundary temperature ( + 4R) takes place mainly in a thin conductive layer at 
each boundary, and the boundary layers are connected by a deep, quasi- 
isothermal convective layer. However, the spectral estimates of heat flux shown 
by the solid curves in figure 6 are based upon a truncation to only one convective 
mode, and therefore the corresponding horizontal-mean temperature cannot 
exhibit a boundary-layer configuration. Figure 7 shows the spectrally deter- 
mined R-%(z) - z, which is the horizontal-mean temperature normalized to give 
the values k 4 at the boundaries for all R. Only the ‘cold’ range 0 < z < 4 is 
shown, because this function is antisymmetric with respect to z = 0. (The function 
~ ( z )  was obtained from (6.4) by numerical quadrature.) At R = 5000, a tempera- 
ture inversion appears midway between the boundaries. This is physically 
unrealistic, but can be regarded as consistent with the tendency for even a single 
mode to give a good spectral estimate of the heat flux (as shown in figure 6). 
In  other words, with only a single mode present to govern the shape of the 
temperature profile, an inversion is inevitably the result of the large temperature 
gradients needed a t  the boundaries. 

From his data, Silveston derived the following empirical power-law expressions 
for N :  

laminar region (1700 < R < 3000): N = 0.0012R@90, 

(4000 < R < 44,000): N = O.24ROz5; 

(R > 8000po’2): N = 0.30R@16po’06; 

( R  > 18,000po‘2): N = 0.10R0.31P45. 

transition region 

turbulent region 

These relations conform to his data to within less than 10 %. Let 

I’ = (dlogN)/(dlogR) (6.8) 
denote the exponent of R in a power-law expression for N .  In  the first laminar 
region Silveston’s empirical relation gives I’ = 0.90. The value of I’ predicted by 
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(6.7) is a decreasing function of R. At R = R,, where u, = 0 and N = 1, it is 
evident that (6.7) gives the marginal slope 

which we now evaluate for comparison with the empirical value I? = 0.90. 
rc = Rc(due/dR), ~,/(S, - (6.9) 

FIGURE 7. Normalized horizontal-mean temperature R - l ~ ( z )  - z (abscissa) in the range 
0 < z < t ,  based upon spectral truncation to one convective mode. Solid curves: P = 1 
and R = 1708, 2000, 3000, 5000; broken curve: P = 10 and R = 5000. 

To evaluate (dgJdR), we have first (da,/dR), = (anc/aR),, since aue/aa = 0 at 
R = R,. To evaluate (agJaR),, differentiate (3 .3)  with respect to R; with due 
regard for the dependence of 3 upon R, we find 

Take the inner product of this equation with S,; in view of the normalization 
(3.6) and the self-adjointness of 2 

3 8R = R - l Z a  + { s, Gal - { S,, z]. 
From the definition of G, ($3)  we find that the second and third terms on the 
right here are zero, because v, and av,/aR are solenoidal and have zero normal 
component on all boundaries. Hence the preceding equation reduces to 
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a useful identity. It follows now that 

where Q, 3 ( ~ ~ 8 , )  = W,O,. 
If the preceding expression for (dce/dR)c is used in (6.9), we get 

(6.11) 

for the marginal slope of (6.7). In  the case of ‘free’ boundaries the functions W(z)  
and O(z) are proportional to cosm (for all a,R,P), so Q, is proportional to 
C O S ~ T Z ,  and it is easy to verify from (6.11) that the marginal slope has the value 
(Malkus & Veronis 1958) I?, = 2. In  the case of rigid horizontal boundaries the 
function Q, was evaluated numerically as part of the process of computation of 

r, = 1.4453 (6.12) N from (6.7)’ and gave 

from (6.11). This value exceeds by a factor of about 1.5 that deduced empirically 
by Silveston. 

It is pertinent to note that the heat flux obtained by application of Stuart’s 

N = 1 + r,(R - RJR, (6.13) 
(1 958) method is 

where I?, is the expression given in (6.11). (This result is discussed in 0 7 . )  The 
marginal slope of (6.13) evidently is exactly Po and thus is the same as that of 
(6.7)-although, as shown by the broken curve in the upper diagram of figure 6, 
(6.13) differs from (6.7) except in the neighbourhood of R = 3,. In  connexion 
with (6.13), Malkus & Veronis (1958) estimated I?, as 1.51 on the basis of approxi- 
mate analytic representations of Wc(z), O,(z) given by Pellew & Southwell (1940). 
On the other hand, Nakagawa (1960) found 0.8565 for re; this was deduced from 
exact analytic representations of K(x), O,(z) given by Reid & Harris (1958). The 
latter authors also tabulated numerical values of these functions for 

2 = 0~00(0~01)0~50,  

which were used by Chandrasekhar (1961, p. 614) to obtain (by numerical 
quadrature) 

the integrals needed for determination of rc. (Here k is a factor the numerical 
value of which is irrelevant for rC) These yield exactly the value stated in (6.12), 
which therefore may be regarded as a confirmed value.? 

The result given in (6.7) for a single primary mode can be extended to the 
truncation that retains the complete subspectrum of primary modes. Return to 
(4.10b). The last convection term is zero, as before, because v” = 0 in truncation 
to convective modes. The second and third convection terms in (4.10b) also are 
zero, as before, owing to the fact that 0 and w are symmetric functions of z (since 
all primary modes are symmetric functions of z), and this is easily seen to give 
antisymmetric functions of x for all expressions whose volume integrals are 

= 0.6919 from Chandrasekhar’s results; this agrees exactly 

&, = 2k x 0.229732, -@ = 2k2 x 0.178585, 

t Howard (1963) finds 
with (6.12). 
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required in these terms. The calculation now proceeds in a straightforward 
manner and leads to the following results: 

A2, = KR I: da, r,, (6.14) 
B 

(6.15) 

(6.16) 

where Q, = (wa 8,) = W,(z) a&), and d,, are the elements of the matrix inverse 

to the (real symmetric) matrix whose elements are (Q, - Q,) (QB- Q,). It is easy 
to verify that (6.14), (6.15), (6.16) reduce to (6.3), (6.4), (6.7) when only a single 
element is retained in the subspectrum of primary modes. 

7. The use of variance integrals 
The heat-flux estimate (6.7) found by solution of truncated spectral-dynamic 

equations merits comparison with one that can be obtained by application of the 
general method developed by Stuart (1958) for estimating the amplitude of a 
secondary flow. Stuart's method as applied to the BBnard problem proceeds 
from the balance condition for thermal variance. To obtain a convenient form of 
this equation, multiply (2.1 b)  by R-lT; after volume integration 

8 aZlat = ( K V ~ T  + Rw) R-IT. 

Introduce the partition T = 7 + 8, where 7 = (T) and 8 = T - (T) ,  as explained 
previously. Since (w)  = 0 and (8) = 0, we get 

4 @/at = i K V 2 8  + Rw) R-lo - K R - ~ ( W ,  (7.1) 

after partial integration of the 7-term. In  the steady state, this can be written 

with the aid of (4.13) for 07.  

In  the procedure that led to (6.7) the convective part of the finite-amplitude 
state of convection was approximated in the form A,S,, where S, is a super- 
critical state of the fundamental primary mode and A, is the corresponding 
spectral amplitude. Following Stuart, we consider now an approximation 
AS,, where S ,  is the marginaZ state of the primary mode and A is an amplitude 
to  be determined. Thus, with w = Aw, and 8 = Ae,, we have from (7.2), after 
suppressing a factor A2, 

(Q, - a,)' A2 = K(KV'8, + Rw,) O,, 

where Q, F (w, 8,). However, KV28, = - R, w, in view of (3.1 b )  and the fact that 
a, = 0,  so the preceding equation after being solved for A2 is (see Chandrasekhar 
1961, p. 614) 

in place or" (6.3). Finally, with N as in (6.6), we obtain (6.13) in place of (6.7). 

A' = K(R - R,) C?c/(Qc - QJ2, 
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In  comparing (6.13) and (6.7), it is necessary to emphasize that Stuart's 
approximation to a finite-amplitude state is not a spectral representation of the 
type employed in this study, because the convective mode is taken in a state (the 
marginal state) which corresponds to a Rayleigh number different from that 
associated with the supercritical state being approximated. The result obtained 
by this means therefore is not strictly comparable with that based upon a 
spectral approximation in terms of supercritical modal states. However, we have 
shown in Q 6 that (6.7) and (6.13) have the same marginal slope (namely, re); in 
other words, the two results are equivalent in the limit R 3 R,. 

We demonstrate now that Stuart's method can be formulated in sucb a way 
as to yield a result identical to (6.7). The first step must be to use the appropriate 
supercritical convective modal state S,  rather than the marginal state S,. 
However, this is not sufficient, for if the balance equation (7.1) for thermal 
variance is used, with w = A, we and 0 = A, t?,, it is easy to see that the result for 

The ratio of this expression to (6.3) (the basis of (6.7)) is R-l@, which in view of 
the normalization (3.18b) always differs from (in fact, is smaller than) unity. 

To explain the discrepancy just noted, it is necessary to consider whether the 
balance condition for thermal variance is compatible with solutions of the 
truncated spectral-dynamic equations. In  fact, generally it is not, because 
solutions of the truncated spectral equations, although compatible with the 
balance condition for kinetic plus thermal variance, are incompatible with the 
balance condition for kinetic variance, and therefore must be incompatible with 
the balance condition for thermal variance. This explains why (7.2) cannot be 
used as a starting point for a derivation of (6.7).t  

To complete this discussion, we note that (6.7) can, in fact, be deduced from 
the balance condition for kinetic plus thermal variance. A partitioned form of 
the condition is needed for this purpose 

('7.3) 

The truncation in question is one for which the first sum on the right is merely 
a, A:, the second sum disappears, and Or is given by (6.2). Equation (7.3) (in the 
steady state) then leads directly to (6.3) for A:, and hence to (6.7) for N .  

8. Summary and conclusions 
The governing hydrodynamical equations, based upon the Boussinesq approxi- 

mations, are summarized in 3 2. Variations of kinematic viscosity and thermal 
conductivity are ignored. Owing to the fact that the velocity is assumed 
solenoidal in the Boussinesq approximations, the pressure is a passive variable, 
and the state of convection is specified uniquely by a state vector consisting 
of the velocity and the dynamic part of the temperature. The inner product of 
two states is defined, and self-adjointness is established for the operator associated 
with the state vector in the governing equations. 

+, A more complete account of this and the next paragraph is given elsewhere (Plstzman 
1964, pp. 98-100). 
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In  $ 3  the normal modes of the variance spectrum are introduced and their 
orthogonality is established. The modes are classified as thermal, convective, or 
kinetic. Thermal modes have no velocity field, whereas kinetic modes have no 
temperature field; both species are always damped. Convective modes are of two 
types: free convective modes, in which average convective flux of heat is from 
hot to cold boundary, and forced convective modes, in which heat flux is from 
cold to hot boundary. The latter are damped, the former may be amplified. The 
velocity field in a convective mode is purely poloidal if symmetry conditions are 
applied at lateral boundaries, as in tessellation of the infinite plane. In  a kinetic 
mode the velocity field is purely toroidal. 

The spectral-dynamic equations are formulated in $ 4. The solution of these 
equations gives the variance spectrum. Owing to the fact that the governing 
equations are bilinear in temperature, there can be no exchange of variance within 
the part of the variance spectrum that is spanned by thermal modes. For this 
reason it is possible to make an explicit elimination of the thermal part of the 
spectrum, and thus the spectral-dynamic equations can be closed on the con- 
vective and kinetic modes. Truncation of the spectral-dynamic equations is 
discussed. Although solutions of the truncated equations do not give approxi- 
mation-in-the-mean to the variance spectrum, they may yield good approxima- 
tions if the truncation is made judiciously. 

I n  $ 5  two ad hoe procedures are introduced for establishing cell-scale uni- 
queness in steady tessellation of the infinite plane. The simpler from a numerical 
standpoint is maximization of the rate of amplification of the fundamental 
primary mode. Alternatively, the heat flux itself can be maximized. The latter 
procedure is in a sense more general, inasmuch as it is expressed in terms of an 
integral rather than a modal property of the convection. (Under the Boussinesq 
approximations, maximization of heat flux is equivalent to maximization of 
entropy production.) Appended to this section is a generalization of Christo- 
pherson’s prototype formula for hexagonal tessellation. 

Particular solutions of the truncated spectral-dynamic equations are obtained 
in $6.  The case for which numerical results are given is one that excludes all 
kinetic modes and all convective modes except a single primary mode. (Primary 
modes are the ‘lowest ’ modes with symmetric vertical structure.) Numerical 
estimates of heat flux are given on the basis of this truncation, for Rayleigh 
numbers up to lo5 and Prandtl numbers in the range to lo3. These estimates 
are compared with the experimental data of Silveston. For water (Prandtl 
number 5), agreement is very satisfactory up to Rayleigh numbers of about 
35,000. For higher Prandtl numbers agreement is good only to about 4000. In  
general, the principal discrepancy between the spectral estimate of heat flux 
and Silveston’s experimental data, is that the latter do not show the predicted 
inhibition of heat flux with increasing Prandtl number.? The fact that the 

t One of the original aims of this investigation was inclusion of the primary forced 
convective mode along with the corresponding free mode, in solution of the spectral 
equations and calculation of heat flux. There are no formal difllculties, but an awkward 
mathematical impediment intmvened in the numerical normal-mode analysis of forced 
modes. Inclusion of a forced mode must reduce the heat flux still further, but the amount 
of this reduction is not yet known. I hope to be able to give these results in the near future. 
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spectral estimate for water is valid through transition to turbulence is surprising, 
especially in light of the circumstance that the thermal boundary layer cannot 
be represented adequately in highly supercritical states by a truncation that 
retains only the lowest vertical mode. This behaviour of the heat-flux estimate 
presumably must be ascribed to the fact that the truncated spectral-dynamic 
equations yield solutions compatible with the balance condition for kinetic plus 
thermal variance and thus satisfy an important integral constraint, no matter 
how the truncation is made. 

The relation between the present work and that of Stuart is discussed in $7. 
It is shown that Stuart’s method can be formulated in such a way as to yield a 
result identical to that obtained through the spectral-dynamic equations when 
only a single convective mode is retained. 
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